Reshaping cardiac microenvironments by macrophage-derived extracellular vesicles-coated Pd@CeO2 heterostructures for myocardial ischemia/reperfusion injury therapy

Materials Today(2023)

引用 2|浏览5
暂无评分
摘要
Myocardial Ischemia/Reperfusion (MI/R) injury, a globally leading cause of mortality and disability, is commonly characterized by myriad inflammatory microenvironments, e.g. high level of reactive oxygen species (ROS), which has a high association with the consequent cell apoptosis and myocardial fibrosis. Herein, a reshaping strategy of cardiac microenvironments has been developed for relieving MI/R injury based on a biomimetic nanosystem (Pd@CeO2-M), which is composed of exterior macrophage-derived extracellular vesicles (MEVs) and encapsulated Pd@CeO2 heterostructures. Due to rapid electrons transfer on the interface, the Pd@CeO2 heterostructures exhibited outstanding ROS scavenging ability. The expression of Mac-1 and CD44 on the surface of Pd@CeO2-M contributes to adsorbing to the inflamed endothelium and efficient cellular uptake within damaged cardiac microenvironments, thus allowing for inflammation-targeting ability. In the mouse model of MI/R injury, Pd@CeO2-M accumulated and remained in the heart region over 24 hours. More importantly, Pd@CeO2-M regulated immune response and promoted anti-apoptotic and anti-inflammatory processes via upregulating the PI3K/Akt signaling pathway and inhibiting the TLR4/p38MAPK and TLR4/NF-κB signaling pathways, dissipated interstitial edema, triggered prominent angiogenesis, and ultimately improved cardiac function and ventricular remodeling. Overall, the Pd@CeO2-M heterostructures will provide an ideal paradigm of biomimetic nanomedicine confronting inflammatory diseases.
更多
查看译文
关键词
Extracellular Vesicles, Heterostructures, Cardiac Microenvironments, Angiogenesis, Myocardial Ischemia, Reperfusion Injury
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要