Nanopore discrimination and sensitive plasma detection of multiple natriuretic peptides: The representative biomarker of human heart failure

Biosensors and Bioelectronics(2023)

引用 3|浏览8
暂无评分
摘要
Natriuretic peptides can relieve cardiovascular stress and closely related to heart failure. Besides, these peptides also have preferable interactions of binding to cellular protein receptors, and subsequently mediate various physiology actions. Hence, detection of these circulating biomarkers could be evaluated as a predictor ("Gold standard") for rapid, early diagnosis and risk stratification in heart failure. Herein, we proposed a measurement to discriminate multiple natriuretic peptides via the peptide-protein nanopore interaction. The nanopore single-molecular kinetics revealed that the strength of peptide-protein interactions was in the order of ANP > CNP > BNP, which was demonstrated by the simulated peptide structures using SWISS-MODEL. More importantly, the peptide-protein interaction analyzing also allowed us to measure the peptide linear analogs and structure damage in peptide by single-chemical bond breakup. Finally, we presented an ultra-sensitive detection of plasma natriuretic peptide using asymmetric electrolyte assay, obtaining a detection limit of ∼770 fM for BNP. At approximately, it is 1597 times lower than that of using symmetric assay (∼1.23 nM), 8 times lower than normal human level (∼6 pM), and 13 times lower than the diagnostic values (∼10.09 pM) complied in the guideline of European Society of Cardiology. That said, the designed nanopore sensor is benefit for natriuretic peptides measurement at single molecule level and demonstrates its potential for heart failure diagnosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要