Objective: Musculoskeletal health monitoring is limited in everyday"/>

Validating Adhesive-Free Bioimpedance of the Leg in Mid-Activity and Uncontrolled Settings

IEEE Transactions on Biomedical Engineering(2023)

引用 0|浏览0
暂无评分
摘要
Objective: Musculoskeletal health monitoring is limited in everyday settings where patient symptoms can substantially change – delaying treatment and worsening patient outcomes. Wearable technologies aim to quantify musculoskeletal health outside clinical settings but sensor constraints limit usability. Wearable localized multi-frequency bioimpedance assessment (MFBIA) shows promise for tracking musculoskeletal health but relies on gel electrodes, hindering extended at-home use. Here, we address this need for usable technologies for at-home musculoskeletal health assessment by designing a wearable adhesive-free MFBIA system using textile electrodes in extended uncontrolled mid-activity settings. Methods: An adhesive-free multimodal wearable leg MFBIA system was developed in-lab under realistic conditions (5 participants, 45 measurements). Mid-activity textile and gel electrode MFBIA was compared across multiple compound movements (10 participants). Accuracy in tracking long-term changes in leg MFBIA was assessed by correlating gel and textile MFBIA simultaneously recorded in uncontrolled settings (10 participants, 80+ measurement hours). Results: Mid-activity MFBIA measurements with textile electrodes agreed highly with (ground truth) gel electrode measurements (average ${{\bm{r}}}^2 = {\bm{\ }}0.95)$ , featuring <1-Ohm differences (0.618 ± 0.340 Ω) across all movements. Longitudinal MFBIA changes were successfully measured in extended at-home settings (repeated measures r = 0.84). Participant responses found the system to be comfortable and intuitive (8.3/10), and all participants were able to don and operate the system independently. Conclusion: This work demonstrates wearable textile electrodes can be a viable substitute for gel electrodes when monitoring leg MFBIA in dynamic, uncontrolled settings. Significance: Adhesive-free MFBIA can improve healthcare by enabling robust wearable musculoskeletal health monitoring in at-home and everyday settings.
更多
查看译文
关键词
Electrical bioimpedance,wearable sensing,textile electrodes,joint physiology,musculoskeletal health
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要