High Pressure Drives Microstructure Modification and zT Enhancement in Bismuth Telluride-Based Alloys

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 0|浏览1
暂无评分
摘要
Manipulating and integrating the microstructures at different scales is crucial to tune the electrical and thermal properties of a given compound. High-pressure sintering can modify the multiscale microstructures and thus empower the cutting-edge thermoelectric performance. In this work, the high-pressure sintering technique followed by annealing is adopted to prepare Gd-doped p-type (Bi0.2Sb0.8)2(Te0.97Se0.03)3 alloys. First, the high energy of high-pressure sintering promotes the reduction of grain size, thus increasing the content of 2D grain boundaries. Next, high-pressure sintering induces strong interior strain, where 1D dense dislocations are generated near the strain field. More interestingly, the rare-earth element Gd with a high melting temperature is dissolved into the matrix via high-pressure sintering, thus promoting the formation of 0D extrinsic point defects. This concurrently improves the carrier concentration and density-of-state effective mass, resulting in an enhanced power factor. In addition, the integrated 0D point defects, 1D dislocations, and 2D grain boundaries by high-pressure sintering strengthen phonon scattering, thereby achieving a low lattice thermal conductivity of 0.5 Wm-1 K-1 at 348 K. Consequently, a maximum zT value of -1.1 at 348 K is achieved in the 0.4 at % Gd-doped (Bi0.2Sb0.8)2(Te0.97Se0.03)3 sample. This work demonstrates that high-pressure sintering enables microstructure modification to enhance the thermoelectric performance of Bi2Te3-based and other bulk materials.
更多
查看译文
关键词
thermoelectric,Bi2Te3,high pressure,nanostructuring,dislocation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要