Optically asymmetric down-shifting films for highly efficient photovoltaics

CHEMICAL ENGINEERING JOURNAL(2023)

引用 2|浏览17
暂无评分
摘要
Quantum dots (QDs) have been regarded as promising spectral converters for photovoltaic (PV) devices owing to their excellent photoluminescence (PL) characteristics. Herein, we report a highly-efficient QD hierarchical (QD-Hie) film that elevates the PV performance by integrating QDs with micro/nano hierarchical structures. The proposed film was designed to ensure low reflectance for incident light (air-to-device) and high reflectance for escape light (device-to-air), obtaining a light-trapping effect to increase the absorption of PVs at wide incident angles. The trapped ultraviolet photons in our film promoted the downshifting property of the QDs and amplified the generation of visible photons, thereby enhancing the PL characteristics of QDs up to 3.71 times with inde-pendency of the incidence angle. Furthermore, the hierarchical structure restricts the outward release of con-verted QDPL, ensuring high availability of the down-shifted photons to PVs. The optical benefit of our film was maximized by attaching them on both sides of bifacial semi-transparent dye-sensitized solar cells, resulting in the short-circuit current density (JSC) improvement of up to 25.97% under AM 1.5G illumination. Along with its high versatility and outstanding JSC increments, our study presents a new perspective of advanced spectral converting layers and provides practical viability for various optoelectronic devices.
更多
查看译文
关键词
Hierarchical photonic structure,Photovoltaic,Luminescent downshifting,Light trapping,Optical asymmetry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要