Overexpression of a Thermostable a-Amylase through Genome Integration in Bacillus subtilis

FERMENTATION-BASEL(2023)

引用 1|浏览20
暂无评分
摘要
A carbohydrate binding module 68 (CBM68) of pullulanase from Anoxybacillus sp. LM18-11 was used to enhance the secretory expression of a thermostable alpha-amylase (BLA702) in Bacillus subtilis, through an atypical secretion pathway. The extracellular activity of BLA702 guided by CBM68 was 1248 U/mL, which was 12.6 and 7.2 times higher than that of BLA702 guided by its original signal peptide and the endogenous signal peptide LipA, respectively. A single gene knockout strain library containing 51 genes encoding macromolecular transporters was constructed to detect the effect of each transporter on the secretory expression of CBM68-BLA702. The gene knockout strain 0127 increased the extracellular amylase activity by 2.5 times. On this basis, an engineered strain B. subtilis 0127 (AmyE::BLA702-NprB::CBM68-BLA702-PrsA) was constructed by integrating BLA702 and CBM68-BLA702 at the AmyE and NprB sites in the genome of B. subtilis 0127, respectively. The molecular chaperone PrsA was overexpressed, to reduce the inclusion body formation of the recombinant enzymes. The highest extracellular amylase activity produced by B. subtilis 0127 (AmyE::BLA702-NprB::CBM68-BLA702-PrsA) was 3745.7 U/mL, which was a little lower than that (3825.4 U/mL) of B. subtilis 0127 (pMAC68-BLA702), but showing a better stability of passage. This newly constructed strain has potential for the industrial production of BLA702.
更多
查看译文
关键词
thermostable alpha-amylase,genome integration,Bacillus subtilis,CBM68,PrsA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要