A biomimetic red blood cell inspired encapsulation design for advanced hydrate-based carbon capture

ENERGY(2023)

引用 2|浏览5
暂无评分
摘要
Enhancing gas-liquid mass transfer is key to promote gas hydrate formation kinetics. Encapsulation of CO2 hydrate is expected to dramatically increase gas-liquid contact to enhance mass transfer. However, gas hydrate encapsulation has never been proposed as the technical issues of gas permeation through capsule shells have never been addressed. In this work, based on the principles of biomimetics, we proposed a novel red blood cell (RBC) inspired carbon capture capsule to promote CO2 hydrate formation kinetics. An experimentally validated model is established to compare the carbon capture performance in an RBC-shaped and a spherical capsule. It is revealed that the gas uptake efficiency of the RBC-shaped capsule is 143% higher than that of the spherical one. The effect of initial pressure and capsule size on CO2 hydrate formation kinetics is also investigated. Further-more, the structure of RBC is optimised and it is found the average amount of hydrate formation per surface area achieves a peak when the ratio of the height at the centre to the width of the ring is between 0.128 and 0.160, which is close to that of real RBCs in human bodies. This work enables the informed design of hydrate-based carbon capture units with high gas uptake efficiency.
更多
查看译文
关键词
Hydrate -based carbon capture,Red blood cell,Hydrate formation kinetics,Heat and mass transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要