Adaptively driven X-ray diffraction guided by machine learning for autonomous phase identification

NPJ COMPUTATIONAL MATERIALS(2023)

引用 2|浏览13
暂无评分
摘要
Machine learning (ML) has become a valuable tool to assist and improve materials characterization, enabling automated interpretation of experimental results with techniques such as X-ray diffraction (XRD) and electron microscopy. Because ML models are fast once trained, there is a key opportunity to bring interpretation in-line with experiments and make on-the-fly decisions to achieve optimal measurement effectiveness, which creates broad opportunities for rapid learning and information extraction from experiments. Here, we demonstrate such a capability with the development of autonomous and adaptive XRD. By coupling an ML algorithm with a physical diffractometer, this method integrates diffraction and analysis such that early experimental information is leveraged to steer measurements toward features that improve the confidence of a model trained to identify crystalline phases. We validate the effectiveness of an adaptive approach by showing that ML-driven XRD can accurately detect trace amounts of materials in multi-phase mixtures with short measurement times. The improved speed of phase detection also enables in situ identification of short-lived intermediate phases formed during solid-state reactions using a standard in-house diffractometer. Our findings showcase the advantages of in-line ML for materials characterization and point to the possibility of more general approaches for adaptive experimentation.
更多
查看译文
关键词
Characterization and analytical techniques,Computational methods,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要