Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues

NATURE ASTRONOMY(2023)

引用 3|浏览30
暂无评分
摘要
In the search for biosignatures on Mars, there is an abundance of data from orbiters and rovers to characterize global and regional habitability, but much less information is available at the scales and resolutions of microbial habitats and biosignatures. Understanding whether the distribution of terrestrial biosignatures is characterized by recognizable and predictable patterns could yield signposts to optimize search efforts for life on other terrestrial planets. We advance an adaptable framework that couples statistical ecology with deep learning to recognize and predict biosignature patterns at nested spatial scales in a polyextreme terrestrial environment. Drone flight imagery connected simulated HiRISE data to ground surveys, spectroscopy and biosignature mapping to reveal predictable distributions linked to environmental factors. Artificial intelligence–machine learning models successfully identified geologic features with high probabilities for containing biosignatures at spatial scales relevant to rover-based astrobiology exploration. Targeted approaches augmented by deep learning delivered 56.9–87.5% probabilities of biosignature detection versus <10% for random searches and reduced the physical search space by 85–97%. Libraries of biosignature distributions, detection probabilities, predictive models and search roadmaps for many terrestrial environments will standardize analogue science research, enabling agnostic comparisons at all scales.
更多
查看译文
关键词
Astrobiology,Ecology,Physics,general,Astronomy,Astrophysics and Cosmology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要