The interaction between nucleotide bases and nano carbon: The dimension dominates

SURFACES AND INTERFACES(2023)

引用 2|浏览7
暂无评分
摘要
Understanding the interaction mechanism between nucleotide bases (NBs) and carbon substrate nanomaterials is a major scientific issue in the field of bioactive molecule identification, which is of great significance for digital diagnosis, gene sequencing, drug development and human health. In this work, the adsorption behavior of five typical NBs molecules A, T, C, G and U on the surface of the widely used carbon-based nanomaterials such as fullerene, carbon nanotubes and graphene, was investigated comprehensively from first-principle views. The adsorption of NBs molecules over the surface of these nano-carbon materials was described rationally and intuitively from both quantitative and qualitative perspectives. The adsorption ability and binding intensity of NBs over the three carbon-based substrates showed obvious population differences. This was mainly because the three carbon materials had different periodic dimensions and thus the electron motion and surface electron properties were affected by the low-dimensional quantum confined effect. The above results indicated the dimension-dominant effect of the interaction between NBs and nano-carbon materials. Through energy decomposition analysis, it was further quantitatively explained that the interaction was dominated by dispersion force. By means of reduced density gradient, Van der Waals surface penetration and charge differential density analysis, the regions, types and intensities of the adsorption for NBs over carbon substrates were intuitively described. This work was important to understand the dimension-dominant effect of the interaction between NBs and carbon nanomaterials.
更多
查看译文
关键词
Carbon,Nucleotide bases,Non-covalent interaction,Energy decomposition analysis,Low-dimension materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要