White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp

PLOS PATHOGENS(2022)

引用 4|浏览11
暂无评分
摘要
Author summaryWhite spot syndrome virus (WSSV) is the causative pathogen of white spot disease (WSD) and represents the most destructive viral disease of shrimp. The virus has evolved various strategies to escape from host defenses or exploit host biological pathways for its reproduction. Studies on viral immune-escape mechanisms can provide new strategies for disease prevention and control in shrimp aquaculture. Mechanistic target of rapamycin (mTOR) plays a central role in the regulation of cell growth and metabolism, which nucleates two distinct protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) with diverse functions at different levels of the signaling pathway. mTORC1 is reported to be exploited by viruses in their reproduction. However, the detail mechanism remains unclear. In this study, we identified a new mechanism of mTOR being hijacked by WSSV in shrimp (Marsupenaeus japonicus). WSSV infects shrimp by its receptor, pIgR and induces the interaction of the intracellular domain of pIgR with Calmodulin. Calmodulin subsequently promotes the activation of AKT by interaction with the pleckstrin homology domain of the kinase. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, S6Ks, for viral protein synthesis. Moreover, mTORC1 also phosphorylates 4EBP1, which results in the separation of 4EBP1 from eIF4E for the translation of viral proteins in shrimp. Our study reveals a novel strategy for WSSV proliferation in shrimp and indicates that the components of mTORC1 may represent potential clinical targets for WSSV control in shrimp aquaculture. Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要