Evaluating the performance of designed terpolymers for polymer flooding

CANADIAN JOURNAL OF CHEMICAL ENGINEERING(2023)

引用 2|浏览4
暂无评分
摘要
In this work, polymeric materials designed for enhanced oil recovery (EOR) were evaluated for their intended application. Properties including viscosity, flow through porous media (resistance factor and residual resistance factor), and heavy oil displacement (incremental oil recovery) were assessed for designed terpolymers of 2-acrylamido-2-methylpropane sulphonic acid (AMPS), acrylamide (AAm), and acrylic acid (AAc). The same properties were evaluated for two commercially available reference materials (e.g., partially hydrolyzed polyacrylamides or HPAM) with similar characteristics, which allowed for direct comparison between the newly designed terpolymers and materials that are currently on the market for the polymer flooding application. The incremental oil recovery directly associated with polymer flooding, which includes both the polymer flooding and post-polymer waterflooding stages (excluding the initial waterflooding injection (or secondary) oil recovery), demonstrates that the designed terpolymers provided a higher incremental recovery (42% and 58%) than the reference materials (33% and 46%). Therefore, the terpolymers provided a higher contribution to incremental (or enhanced) oil recovery than the typical HPAM. Additionally, both designed terpolymers showed better injectivity in unconsolidated porous media and are less likely to cause plugging than the commercially available reference materials. Therefore, using a targeted design approach ultimately led to polymeric materials with excellent performance for EOR polymer flooding applications.
更多
查看译文
关键词
enhanced oil recovery,material design,polymer flooding,reactivity ratios,terpolymers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要