The effect of controllable train-tail devices on the longitudinal impulse of the combined trains under initial braking

RAILWAY ENGINEERING SCIENCE(2023)

引用 0|浏览7
暂无评分
摘要
The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse. However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent, which is worth studying. In this work, according to the formation of the Datong–Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system (TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged; the maximum coupler force of the combined train reduces by 32.5% with the exhaust area increasing from 70% to 140%; when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.
更多
查看译文
关键词
Controllable train-tail device,20,000-ton combined train,Coupler force,Initial braking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要