Influence of Integration of Iron Ore Tailings on the Physio-mechanical and Microstructure Properties of Fly Ash-Based Coarse Aggregates

JOURNAL OF TESTING AND EVALUATION(2023)

引用 0|浏览5
暂无评分
摘要
The goal of this experimental study is to produce fly ash (FA)-based coarse aggregates by adding iron ore tailings (IOT) to the FA-based precursor as an additional mix component. The involvement of different types of binders-influential factors of both pelletization and geopolymerization that govern the production of FA-based coarse aggregates-was experimentally designed by adopting Taguchi's experimental design. An evaluation was conducted utilizing response indexes at three curing periods to study the accumulation of all the influencing factors in the production process as well as on the engineering features of IOT admixed FA-based coarse aggregates. Aggregate impact and crushing values, individual pellet strength (IPS), and specific gravity and water absorption values were measured. According to experimental findings, IOT addition considerably affects the engineering characteristics of FA-based coarse aggregates. The heat resistance of the produced aggregates was found to be improved by the presence of different sodium oxide dosages and blending ratios (IOT:FA) based on analysis through scanning electron microscopy and thermogravimetric differential thermal analysis. The role of IOT in associative formation of calcium silicate hydrate is demonstrated by increasing calcium hydroxide, which supports increasing IPS values of produced aggregates. From the 1st to the 200th day of curing age, Fourier-transform infrared spectroscopy studies between the best-and worst-performing mixes showed two things: first, the emergence of new peaks with time, and second, the observation of major bands shifting to lower and higher wavenumbers, which was found to be directly correlated to the performance of the aggregates.
更多
查看译文
关键词
iron ore tailings fly ash sustainable value-added resourcesTaguchi?s orthogonal array thermogravimetric analysis,Fourier-transform infrared spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要