Mitigating Surface Deficiencies of Perovskite Single Crystals Enables Efficient Solar Cells with Enhanced Moisture and Reverse-Bias Stability

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 8|浏览3
暂无评分
摘要
Metal halide perovskite single crystals are promising for diverse optoelectronic applications due to their outstanding properties. In comparison to the bulk, the crystal surface suffers from high defect density and is moisture sensitive; however, surface modification strategies of perovskite single crystals are relatively deficient. Herein, solar cells based on methylammonium lead triiodide (MAPbI(3)) thin single crystals are selected as a prototype to improve single-crystal perovskite devices by surface modification. The surface trap passivation and protection against moisture of MAPbI(3) thin single crystals are achieved by one bifunctional molecule 3-mercaptopropyl(dimethoxy)methylsilane (MDMS). The sulfur atom of MDMS can coordinate with bare Pb2+ of MAPbI(3) single crystals to reduce surface defect density and nonradiative recombination. As a result, the modified devices show a remarkable efficiency of 22.2%, which is the highest value for single-crystal MAPbI(3) solar cells. Moreover, MDMS modification mitigates surface ion migration, leading to enhanced reverse-bias stability. Finally, the cross-link of silane molecules forms a protective layer on the crystal surface, which results in enhanced moisture stability of both materials and devices. This work provides an effective way for surface modification of perovskite single crystals, which is important for improving the performance of single-crystal perovskite solar cells, photodetectors, X-ray detectors, etc.
更多
查看译文
关键词
moisture stability,perovskite single crystals,perovskite solar cells,reverse-bias stability,surface modifications
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要