Chrome Extension
WeChat Mini Program
Use on ChatGLM

Impact of pH on the Formation and Properties of Whey Protein Coronas around TiO2 Nanoparticles

Journal of agricultural and food chemistry(2023)

Cited 1|Views3
No score
Abstract
In aqueous media, titanium dioxide (TiO2) nanoparticles can interact with proteins in their environment and form a protein corona. The pH of the aqueous media affects the structure and properties of the protein corona, and currently there is a lack of understanding of the effects of pH on the characteristics of protein coronas. In this study, we examined the impact of pH (2-11) on the structural and physicochemical properties of whey protein coronas formed around TiO2 nanoparticles. The pH of the solution influenced the structure of whey protein molecules, especially around their isoelectric point. Thermogravimetric and quartz crystal microbalance analyses showed that the adsorption capacity of the whey proteins was the largest at their isoelectric points and the lowest under highly acidic or alkaline conditions. The majority of the proteins were tightly bound to the nanoparticle surfaces, forming a hard corona. The influence of solution pH on protein corona properties was mainly attributed to its impact on the electrostatic forces in the system, which impacted the protein conformation and interactions. This study provides useful insights into the influence of pH on the formation and properties of protein coronas around inorganic nanoparticles, which may be important for understanding the gastrointestinal and environmental fates.
More
Translated text
Key words
whey protein coronas,nanoparticles
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined