Unravelling diversity, drivers, and indicators of soil microbiome of Trillium govanianum, an endangered plant species of the Himalaya

Environmental Research(2023)

引用 1|浏览0
暂无评分
摘要
In an era of global environmental change, conservation of threatened biodiversity and ecosystem restoration are formidable ecological challenges. The forest understory strata and the belowground soil environment including rhizospheric microbial communities, which are crucial for ecosystem functioning and overall forest biodiversity maintenance, have remained understudied. Here, we investigate the soil microbiome of Trillium govanianum – an endangered Himalayan Forest herb, to unravel the underground diversity, drivers, and potential indicators of the microbial community. We collected rhizospheric and bulk soil samples for microbiome and physicochemical analysis at three sites along an elevation gradient (2500–3300 m) in Kashmir Himalaya. Amplicon sequencing of 16 S rRNA and ITS was used to identify the bacterial and fungal soil microorganisms. We found significant differences in the structure and diversity of microbial community (bacterial and fungal) between the rhizosphere and bulk soil along the altitudinal gradient, and noticeable shifts in the nutrient level in dominant microbial phyla associated with T. govanianum. A significant difference between soil physicochemical parameters and increasing altitude suggests that microbial community structure is determined by altitude and soil type. Similarly, the microbial communities showed a significant (P < 0.05) correlation with soil physicochemical variables along the altitudinal gradient. The moisture content in bacterial and total organic carbon in fungal communities showed the most substantial impact on the physiochemical drivers. We also identify potential bacterial and fungal plant growth promoter indicator species in the soil microbiome of T. govanianum. Overall, our findings provide novel research insights that can be pivotal in designing integrated species recovery programs and long-term restoration plans for T. govanianum, with learnings for biodiversity conservation elsewhere.
更多
查看译文
关键词
Soil microbiome, Altitudinal gradient, Environmental variables, Trillium govanianum, Himalaya
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要