Emus live on the Gross-Neveu-Yukawa archipelago

Ting-Tung Wang,Zi Yang Meng

arXiv (Cornell University)(2023)

Cited 0|Views2
No score
Abstract
It is expected that the Gross-Neveu-Yukawa (GNY) chiral Ising transition of $N$ Majorana (or $N_f=N/4$ four-component Dirac) fermions coupled with scalar field in (2+1)D will be the first fermionic quantum critical point that various methods such as conformal bootstrap [1], perturbative renormalization group [2] and quantum Monte Carlo (QMC) simulations [3], would yield the converged critical exponents -- serving the same textbook role as the Ising and $O(N)$ models in the statistical and quantum phase transition. However, such expectation has not been fully realized from the lattice QMC simulations due to the obstacles introduced by the UV finite size effect. In this work, by means of the elective-momentum ultra-size (EMUS) QMC method [4], we compute the critical exponents of the GNY $N=8$ chiral Ising transition on a 2D $\pi$-flux fermion lattice model between Dirac semimetal and quantum spin Hall insulator phases [3, 5]. With the matching of fermionic and bosonic momentum transfer and collective update in momentum space, our QMC results provide the fully consistent exponents with those obtained from the bootstrap and perturbative approaches. In this way, the Emus now live happily on the $N=8$ island and could explore the Gross-Neveu-Yukawa archipelago [1] with ease.
More
Translated text
Key words
gross-neveu-yukawa
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined