Cancer cell membrane camouflaging mesoporous nanoplatform interfering with cellular redox homeostasis to amplify photodynamic therapy on oral carcinoma.

Journal of drug targeting(2023)

Cited 2|Views4
No score
Abstract
The efficacy of photodynamic therapy (PDT) is still limited by the inefficient utilisation of generated ROS in tumours due to cellular redox homeostasis. To improve the therapeutic efficacy for oral carcinoma, biomimetic cell membrane-coated mesoporous nanoplatform was tailored to interfere with cellular redox homeostasis for amplified PDT. In this study, CAL-27 cancer cell membrane (CM) was encapsulated onto the mesoporous silica NPs (MSN), which were preloaded with Chlorin e6 (Ce6) and Curcumin (Cur). The biomimetic nanoparticles displayed a size of around 120 nm, which had excellent cytotoxicity under a laser and increased uptake ability to tumour cell. After internalised by cancer cells, the released Cur could effectively disturb ROS-defence system by suppressing TrxR activity, and decreasing TrxR-2 expression ( < 0.05), leading to enhanced cancer cell killing ability of PDT. The biomimetic system was found to selectively accumulate in the tumour due to its homologous targeting capability and inhibit tumour growth significantly. In a word, the biomimetic nanoplatform apparently enhanced the therapeutic effect of PDT on tumours by Cur disturbing the ROS-defence system, which exhibited a new way to enhance PDT.
More
Translated text
Key words
Curcumin,biomimetic nanoparticle,oral carcinoma,photodynamic therapy,thioredoxin reductase
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined