谷歌浏览器插件
订阅小程序
在清言上使用

Determinants of species-specific utilization of ACE2 by human and animal coronaviruses

Communications Biology(2023)

引用 0|浏览10
暂无评分
摘要
Utilization of human ACE2 allowed several bat coronaviruses (CoVs), including the causative agent of COVID-19, to infect humans either directly or via intermediate hosts. Here, we analyzed the ability of Spike proteins from 24 human or animal CoVs to use ACE2 receptors across nine reservoir, potential intermediate and human hosts. We show that overall SARS-CoV-2 Omicron variants evolved more efficient ACE2 usage but mutation of R493Q in BA.5 Spike disrupts utilization of ACE2 from Greater horseshoe bats. Spikes from most CoVs showed species-specific differences in ACE2 usage, partly due to variations in ACE2 residues 31, 41 or 354. Mutation of T403R allowed the RaTG13 bat CoV Spike to use all ACE2 orthologs analysed for viral entry. Sera from COVID-19 vaccinated individuals neutralized the Spike proteins of a range of bat Sarbecoviruses. Our results define determinants of ACE2 receptor usage of diverse CoVs and suggest that COVID-19 vaccination may protect against future zoonoses of SARS-CoV-related bat viruses. Highlights ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要