Chrome Extension
WeChat Mini Program
Use on ChatGLM

Data from SOCS3 Transactivation by PPARγ Prevents IL-17–Driven Cancer Growth

crossref(2023)

Cited 9|Views34
No score
Abstract
AbstractActivation of the transcription factor PPARγ by the n-3 fatty acid docosahexaenoic acid (DHA) is implicated in controlling proinflammatory cytokine secretion, but the intracellular signaling pathways engaged by PPARγ are incompletely characterized. Here, we identify the adapter-encoding gene SOCS3 as a critical transcriptional target of PPARγ. SOCS3 promoter binding and gene transactivation by PPARγ was associated with a repression in differentiation of proinflammatory T-helper (TH)17 cells. Accordingly, TH17 cells induced in vitro displayed increased SOCS3 expression and diminished capacity to produce interleukin (IL)-17 following activation of PPARγ by DHA. Furthermore, naïve CD4 T cells derived from mice fed a DHA-enriched diet displayed less capability to differentiate into TH17 cells. In two different mouse models of cancer, DHA prevented tumor outgrowth and angiogenesis in an IL-17–dependent manner. Altogether, our results uncover a novel molecular pathway by which PPARγ-induced SOCS3 expression prevents IL-17–mediated cancer growth. Cancer Res; 73(12); 3578–90. ©2013 AACR.
More
Translated text
Key words
pparγ prevents,cancer growth
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined