Data from Phase 0 Trial of AZD1775 in First-Recurrence Glioblastoma Patients

crossref(2023)

引用 0|浏览9
暂无评分
摘要
Abstract

Purpose: AZD1775 is a first-in-class Wee1 inhibitor with dual function as a DNA damage sensitizer and cytotoxic agent. A phase I study of AZD1775 for solid tumors suggested activity against brain tumors, but a preclinical study indicated minimal blood–brain barrier penetration in mice. To resolve this controversy, we examined the pharmacokinetics and pharmacodynamics of AZD1775 in patients with first-recurrence, glioblastoma.

Patients and Methods: Twenty adult patients received a single dose of AZD1775 prior to tumor resection and enrolled in either a dose-escalation arm or a time-escalation arm. Sparse pharmacokinetic blood samples were collected, and contrast-enhancing tumor samples were collected intraoperatively. AZD1775 total and unbound concentrations were determined by a validated LC/MS-MS method. Population pharmacokinetic analysis was performed to characterize AZD1775 plasma pharmacokinetic profiles. Pharmacodynamic endpoints were compared to matched archival tissue.

Results: The AZD1775 plasma concentration–time profile following a single oral dose in patients with glioblastoma was well-described by a one-compartment model. Glomerular filtration rate was identified as a significant covariate on AZD1775 apparent clearance. AZD1775 showed good brain tumor penetration, with a median unbound tumor-to-plasma concentration ratio of 3.2, and achieved potential pharmacologically active tumor concentrations. Wee1 pathway suppression was inferred by abrogation of G2 arrest, intensified double-strand DNA breakage, and programmed cell death. No drug-related adverse events were associated with this study.

Conclusions: In contrast to recent preclinical data, our phase 0 study of AZD 1775 in recurrent glioblastoma indicates good human brain tumor penetration, provides the first evidence of clinical biological activity in human glioblastoma, and confirms the utility of phase 0 trials as part of an accelerated paradigm for drug development in patients with glioma. Clin Cancer Res; 24(16); 3820–8. ©2018 AACR.

See related commentary by Vogelbaum, p. 3790

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要