Surface Subsidence Characteristics and Causes in Beijing (China) before and after COVID-19 by Sentinel-1A TS-InSAR.

Haiquan Sheng,Lv Zhou,Changjun Huang, Shubian Ma, Lingxiao Xian, Yukai Chen,Fei Yang

Remote. Sens.(2023)

Cited 0|Views5
No score
Abstract
Surface subsidence is a serious threat to human life, buildings and traffic in Beijing. Surface subsidence is closely related to human activities, and human activities in Beijing area showed a decreasing trend during the Corona Virus Disease 2019 (COVID-19). To study surface subsidence in Beijing before and after the COVID-19 outbreak and its causes, a total of 51 Sentinel-1A SAR images covering Beijing from January 2018 to April 2022 were selected to derive subsidence information by Time Series Interferometry Synthetic Aperture Radar (TS-InSAR). The results of surface subsidence in Beijing demonstrate that Changping, Chaoyang, Tongzhou and Daxing Districts exhibited the most serious subsidence phenomenon before the COVID-19 outbreak. The four main subsidence areas form an anti-Beijing Bay that surrounds other important urban areas. The maximum subsidence rate reached -57.0 mm/year. After the COVID-19 outbreak, the main subsidence area was separated into three giant subsidence funnels and several small subsidence funnels. During this period, the maximum subsidence rate was reduced to -43.0 mm/year. Human activity decrease with the COVID-19 outbreak. This study effectively analysed the influence of natural factors on surface subsidence after excluding most of the human factors. The following conclusions are obtained from the analysis: (1) Groundwater level changes, Beijing's geological structure and infrastructure construction are the main reasons for surface subsidence in Beijing. (2) Seasonal changes in rainfall and temperature indirectly affect groundwater level changes, thereby affecting surface subsidence in the area. (3) The COVID-19 outbreak in early 2020 reduced the payload of Beijing's transportation facilities. It also slowed down the progress of various infrastructure construction projects in Beijing. These scenarios affected the pressure on the soft land base in Beijing and reduced the surface subsidence trend to some extent.
More
Translated text
Key words
InSAR,persistent scatterer,Beijing,plain,Sentinel-1A,time series
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined