Backscattering Statistics of Indoor Full-Polarization Scatterometric and Synthetic Aperture Radar Measurements of a Rice Field.

Remote. Sens.(2023)

Cited 0|Views5
No score
Abstract
The backscattering coefficient sigma 0 of a rice field is closely related to the amplitude, power, and phase of its radar backscattered signals. An investigation of the statistics of indoor full-polarization scatterometric and synthetic aperture radar (SAR) measurements on rice fields in the Laboratory of Target Microwave Properties (LAMP) is implemented in terms of the amplitude, power, and phase difference of backscattered signals. The validity and accuracy of LAMP measured data are studied and confirmed for the first time. The Rayleigh fading model and phase difference statistical model are both validated by the experimental data. Continuous microwave spectrum is obtained after spatial and frequency averaging over N independent scatterometric samples and full-polarization images are generated by applying a focusing algorithm to the SAR data. Comparisons between scatterometric results and SAR images with three resolutions of rice field scene are conducted with respect to amplitude and co-pol phase difference (CPD) statistics, as well as backscattering coefficients. The results show that the measured statistics of a rice field scene are in good agreement with those calculated by theoretical formulas. Spatial and frequency averaging of scatterometric data can increase N and thus improve the estimation accuracy of the backscattering coefficients. SAR images show a shift to the near range due to the intrinsic height of the rice plants and the probable existence of the double bounce scattering between vertical rice stems and the water surface considering the measurement geometry. The measured amplitude statistics of the SAR images approach a Rayleigh distribution with reduction of the resolution cell size while the size has little effect on the CPD statistics. The differences between backscattering coefficients extracted from the scatterometric data and SAR images confirm a 1-dB calibration accuracy in power of the LAMP measurement system.
More
Translated text
Key words
backscattering statistics,Laboratory of Target Microwave Properties (LAMP),rice field,scatterometric measurement,synthetic aperture radar image,phase difference
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined