Encapsulation of Cadmium-Free InP/ZnSe/ZnS Quantum Dots in Poly(LMA-co-EGDMA) Microparticles via Co-flow Droplet Microfluidics.

Small methods(2023)

引用 0|浏览10
暂无评分
摘要
Quantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group. However, the InP-based QDs lack an overall photostability under environmental influences. One design path of achieving stability is through encapsulation in cross-linked polymer matrices with the possibility to covalently link the matrix to surface ligands of modified core-shell QDs. The work focuses on the formation of polymer microbeads suitable for InP-based QD encapsulation, allowing for an individual protection of QDs and an improved processibility via this particle-based approach. For this, a microfluidic based method in the co-flow regime is used that consists of an oil-in-water droplet system in a glass capillary environment. The generated monomer droplets are polymerized in-flow into poly(LMA-co-EGDMA) microparticles with embedded InP/ZnSe/ZnS QDs using a UV initiation. They demonstrate how a successful polymer microparticle formation via droplet microfluidics produces optimized matrix structures leading to a distinct photostability improvement of InP-based QDs compared to nonprotected QDs.
更多
查看译文
关键词
cadmium-free quantum dots,droplet microfluidics,encapsulation,particle formation,photopolymerization,quantum dots,rheology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要