The dynamic adaptive landscape of cetacean body size (vol 33, pg 1787, 2023)

Current biology : CB(2023)

Cited 3|Views7
No score
Abstract
Adaptive landscapes are central to evolutionary theory, forming a conceptual bridge between micro- and macroevolution. Evolution by natural selection across an adaptive landscape should drive lineages toward fitness peaks, shaping the distribution of phenotypic variation within and among clades over evolutionary timescales. The location and breadth of these peaks in phenotypic space can also evolve, but whether phylogenetic comparative methods can detect such patterns has largely remained unexplored. Here, we characterize the global and local adaptive landscape for total body length in cetaceans (whales, dolphins, and relatives), a trait that spans 5 orders of magnitude, across their ∼53 million year evolutionary history. Using phylogenetic comparative methods, we analyze shifts in long-term mean body length and directional changes in average trait values for 345 living and fossil cetacean taxa. Remarkably, we find that the global macroevolutionary adaptive landscape of cetacean body length is relatively flat, with very few peak shifts occurring after cetaceans entered the oceans. Local peaks are more numerous and manifest as trends along branches linked to specific adaptations. These results contrast with previous studies using only extant taxa, highlighting the vital role of fossil data for understanding macroevolution. Our results indicate that adaptive peaks are dynamic and are associated with subzones of local adaptations, creating moving targets for species adaptation. In addition, we identify limits in our ability to detect some evolutionary patterns and processes and suggest that multiple approaches are required to characterize complex hierarchical patterns of adaptation in deep time.
More
Translated text
Key words
Fabric model,Ornstein-Uhlenbeck,adaptive landscape,body size,cetaceans,macroevolution,phenotypic evolutio
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined