Enhanced electrokinetic remediation by magnetic induction for the treatment of co-contaminated soil

Journal of hazardous materials(2023)

引用 1|浏览10
暂无评分
摘要
The electroplating industry site is an important reservoir of per- and poly-fluoroalkyl substances (PFASs) and heavy metals. In this work, a novel electrokinetic in-situ chemical oxidation system was established to restore an actual soil co-contaminated with high concentrations of heavy metals (Cr, Cu, Zn and Ni) and PFASs. Potassium persulfate (PS, K2S2O8) and industrial waste steel slag were used as the oxidant and activator, respectively. The steel slag was evenly added in the soil, while PS was dosed in the cathode chamber. Citric acid fermentation broth produced by Aspergillus niger was added in the anode chamber to act as the metal chelator. A periodic alternating magnetic field was employed to enhance the catalytic performance of steel slag for PS. After 15-day treatment, 86.7% of PFASs and 87.2% of heavy metals were removed without PFASs accumulation in the electrolyte, with a defluorination percentage of 79.2%. The remediated soil had no phytotoxicity for wheat seed growth based on 7-day cultivation results. The quality of remediated soil could reach the national Class II criteria for residential use. Electron paramagnetic resonance spectroscopy analysis demonstrated that SO4 & BULL;- and & BULL;OH were the major oxidative radicals responsible for PFASs degradation. Adding steel slag in the soil performed better than that in the cathode chamber based on pollutant removal and alleviating soil acidification. Magnetic induction could enhance PS activation by promote the corrosion of steel slag and thermal activation, thus
更多
查看译文
关键词
Alternating magnetic field,Base activation,PFASs,Phytotoxicity,Steel slag
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要