Photoactivatable BODIPYs for Live-Cell PALM.

Molecules (Basel, Switzerland)(2023)

引用 0|浏览8
暂无评分
摘要
Photoactivated localization microscopy (PALM) relies on fluorescence photoactivation and single-molecule localization to overcome optical diffraction and reconstruct images of biological samples with spatial resolution at the nanoscale. The implementation of this subdiffraction imaging method, however, requires fluorescent probes with photochemical and photophysical properties specifically engineered to enable the localization of single photoactivated molecules with nanometer precision. The synthetic versatility and outstanding photophysical properties of the borondipyrromethene (BODIPY) chromophore are ideally suited to satisfy these stringent requirements. Specifically, synthetic manipulations of the BODIPY scaffold can be invoked to install photolabile functional groups and photoactivate fluorescence under photochemical control. Additionally, targeting ligands can be incorporated in the resulting photoactivatable fluorophores (PAFs) to label selected subcellular components in live cells. Indeed, photoactivatable BODIPYs have already allowed the sub-diffraction imaging of diverse cellular substructures in live cells using PALM and can evolve into invaluable analytical probes for bioimaging applications.
更多
查看译文
关键词
borondipyrromethenes (BODIPYs),fluorescence imaging,photoactivatable fluorophores (PAFs),photoactivated localization microscopy (PALM),single-molecule localization microscopy (SMLM)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要