Micromechanical aspects of the effect of temperature and local plastic strain magnitude on the fracture toughness of ferrite steels

Procedia Structural Integrity(2023)

引用 1|浏览3
暂无评分
摘要
The paper shows that the influence of plastic strain and temperature on the rate of crack nuclei (CN) formation is a crucial factor controlling the shape of the temperature dependence of fracture toughness and its scatter limits. Within the framework of the microscopic model described, it is explained that the dependence of the incompatibility of microplastic deformation at grain boundaries or interfaces on the value of plastic strain and temperature is the reason for the effect of these factors on the rate of CN formation. The dependencies of the CN bulk density on temperature and plastic strain are given. In the latter case, a non-monotonic change in CN density is observed. The maximum intensity of CN formation is observed when the critical value of plastic strain is reached. For ferritic structural steels, this strain is about 2%. Using reactor pressure vessel steel and cast manganese steel as examples, it is shown that not taking these effects into account in the local fracture approach leads to considerable errors in the prediction of the temperature dependence of the fracture toughness and its scatter limits.
更多
查看译文
关键词
Fracture toughness,Ductile-to-brittle transition,Local approach to fracture,Crack nuclei,Micromechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要