Disorder-induced excitation continuum in a spin-1/2 cobaltate on a triangular lattice

arxiv(2023)

引用 0|浏览58
暂无评分
摘要
A spin-1/2 triangular-lattice antiferromagnet is a prototypical frustrated quantum magnet, which exhibits remarkable quantum many-body effects that arise from the synergy between geometric spin frustration and quantum fluctuations. It can host quantum frustrated magnetic topological phenomena like quantum spin liquid (QSL) states, highlighted by the presence of fractionalized quasiparticles within a continuum of magnetic excitations. In this work, we use neutron scattering to study CoZnMo$_3$O$_8$, which has a triangular lattice of Jeff = 1/2 Co2+ ions with octahedral coordination. We found a wave-vector-dependent excitation continuum at low energy that disappears with increasing temperature. Although these excitations are reminiscent of a spin excitation continuum in a QSL state, their presence in CoZnMo$_3$O$_8$ originates from magnetic intersite disorder-induced dynamic spin states with peculiar excitations. Our results, therefore, give direct experimental evidence for the presence of a disorder-induced spin excitation continuum.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要