Efficient Fabrication of Micro/Nanostructured Polyethylene/Carbon Nanotubes Foam with Robust Superhydrophobicity, Excellent Photothermality, and Sufficient Adaptability for All-Weather Freshwater Harvesting.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 3|浏览7
暂无评分
摘要
The integration of fog collection and solar-driven evaporation has great significance in addressing the challenge of the global freshwater crisis. Herein, a micro/nanostructured polyethylene/carbon nanotubes foam with interconnected open-cell structure (MN-PCG) is fabricated using an industrialized micro extrusion compression molding technology. The 3D surface micro/nanostructure provides sufficient nucleation points for tiny water droplets to harvest moisture from humid air and a fog harvesting efficiency of 1451 mg cm-2 h-1 is achieved at night. The homogeneously dispersed carbon nanotubes and the graphite oxide@carbon nanotubes coating endow the MN-PCG foam with excellent photothermal properties. Benefitting from the excellent photothermal property and sufficient steam escape channels, the MN-PCG foam attains a superior evaporation rate of 2.42 kg m-2 h-1 under 1 Sun illumination. Consequently, a daily yield of ≈35 kg m-2 is realized by the integration of fog collection and solar-driven evaporation. Moreover, the robust superhydrophobicity, acid/alkali tolerance, thermal resistance, and passive/active de-icing properties provide a guarantee for the long-term work of the MN-PCG foam during practical outdoor applications. The large-scale fabrication method for an all-weather freshwater harvester offers an excellent solution to address the global water scarcity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要