Fast remote spectral discrimination through ghost spectrometry

Physical Review A(2023)

引用 0|浏览21
暂无评分
摘要
Assessing the presence of chemical, biological, radiological and nuclear threats is a crucial task which is usually dealt with by analyzing the presence of spectral features in a measured absorption profile. The use of quantum light allows to perform these measurements remotely without compromising the measurement accuracy through ghost spectrometry. However, in order to have sufficient signal-to-noise ratio, it is typically required to wait long acquisition times, hence subtracting to the benefits provided by remote sensing. In many instances, though, reconstructing the full spectral lineshape of an object is not needed and the interest lies in discriminating whether a spectrally absorbing object may be present or not. Here we show that this task can be performed fast and accurately through ghost spectrometry by comparing the low resources measurement with a reference. We discuss the experimental results obtained with different samples and complement them with simulations to explore the most common scenarios.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要