Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection

CVPR 2023(2023)

引用 5|浏览154
暂无评分
摘要
With basic Semi-Supervised Object Detection (SSOD) techniques, one-stage detectors generally obtain limited promotions compared with two-stage clusters. We experimentally find that the root lies in two kinds of ambiguities: (1) Selection ambiguity that selected pseudo labels are less accurate, since classification scores cannot properly represent the localization quality. (2) Assignment ambiguity that samples are matched with improper labels in pseudo-label assignment, as the strategy is misguided by missed objects and inaccurate pseudo boxes. To tackle these problems, we propose a Ambiguity-Resistant Semi-supervised Learning (ARSL) for one-stage detectors. Specifically, to alleviate the selection ambiguity, Joint-Confidence Estimation (JCE) is proposed to jointly quantifies the classification and localization quality of pseudo labels. As for the assignment ambiguity, Task-Separation Assignment (TSA) is introduced to assign labels based on pixel-level predictions rather than unreliable pseudo boxes. It employs a 'divide-and-conquer' strategy and separately exploits positives for the classification and localization task, which is more robust to the assignment ambiguity. Comprehensive experiments demonstrate that ARSL effectively mitigates the ambiguities and achieves state-of-the-art SSOD performance on MS COCO and PASCAL VOC. Codes can be found at https://github.com/PaddlePaddle/PaddleDetection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要