A High-Eccentricity Warm Jupiter Orbiting TOI-4127

ASTRONOMICAL JOURNAL(2023)

引用 0|浏览49
暂无评分
摘要
We report the discovery of TOI-4127 b, a transiting, Jupiter-sized exoplanet on a long-period ($P = 56.39879^{+0.00010}_{-0.00010}$ d), high-eccentricity orbit around a late F-type dwarf star. This warm Jupiter was first detected and identified as a promising candidate from a search for single-transit signals in TESS Sector 20 data, and later characterized as a planet following two subsequent transits (TESS Sectors 26 and 53) and follow-up ground-based RV observations with the NEID and SOPHIE spectrographs. We jointly fit the transit and RV data to constrain the physical ($R_p = 1.096^{+0.039}_{-0.032} R_J$, $M_p = 2.30^{+0.11}_{-0.11} M_J$) and orbital parameters of the exoplanet. Given its high orbital eccentricity ($e=0.7471^{+0.0078}_{-0.0086}$), TOI-4127 b is a compelling candidate for studies of warm Jupiter populations and of hot Jupiter formation pathways. We show that the present periastron separation of TOI-4127 b is too large for high-eccentricity tidal migration to circularize its orbit, and that TOI-4127 b is unlikely to be a hot Jupiter progenitor unless it is undergoing angular momentum exchange with an undetected outer companion. Although we find no evidence for an external companion, the available observational data are insufficient to rule out the presence of a perturber that can excite eccentricity oscillations and facilitate tidal migration.
更多
查看译文
关键词
jupiter,high-eccentricity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要