Electrochemical biosensor based on bipedal DNA walker for highly sensitive amplification detection of apurinic/apyrimidinic endonuclease 1

Xingcong Wang,Jinting Meng, Haoping Zhang, Jingyan Mou,Jinping Xiong,Hong Wang,Xin Su,Yingwei Zhang

Sensors and Actuators B: Chemical(2023)

引用 3|浏览22
暂无评分
摘要
DNA walker has been widely used in various types of biosensors for signal-amplification detection of low abundance analytes. However, the usual design of unipedal walker provides limited signal amplification effect with poor sensitivity. Here, we designed an electrochemical biosensor based on bipedal DNA walker allowing for highly sensitive detection of apurinic/apyrimidinic endonuclease 1 (APE 1), a significant base excision repair enzyme, which is over-expressed in multiple cancer cells emerging as a promising biomarker for cancer diagnostics. The bipedal DNA walker can be released after APE1 cleaving apurinic/apyrimidinic (AP) sites, and then perform the catalytic hairpin assembly (CHA) process, triggering the downstream hybridization chain reaction (HCR) to achieve a dual-amplified current signal. This bipedal walker presents dramatically increased catalytic efficiency in the upstream CHA process, and finally contributes almost 5 times synergistic enhanced current signal compared to unipedal walker. We successfully realized the highly sensitive detection of APE 1 with a wide linear range from 0.001 U mL−1 to 1 U mL−1 reaching a detection limit of 0.001 U mL−1. This biosensor showed good specificity in discrimination of APE1 from other interfering enzymes. It was successfully applied to investigate APE 1 expression level in cell lysate, demonstrating its potential diagnostics applications.
更多
查看译文
关键词
APE1 activity detection,Single-stranded bipedal DNA walker,Catalytic hairpin assembly,Hybrid chain reaction,Electrochemical biosensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要