Entropy-driven assisted T7 RNA polymerase amplification-activated CRISPR/Cas13a activity for SARS-CoV-2 detection in human pharyngeal swabs and environment by an electrochemiluminescence biosensor.

Journal of hazardous materials(2023)

引用 3|浏览7
暂无评分
摘要
In this study, we introduce an electrochemiluminescence (ECL) sensing platform based on the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). This platform combines a programmable entropy-driven cycling strategy, T7 RNA polymerase, and the CRISPR/Cas13a system to amplify the determination of the SARS-CoV-2 RdRp gene. The TiCT-compliant ECL signaling molecule offers unique benefits when used with the ECL sensing platform to increase the assay sensitivity and the electrode surface modifiability. To obtain the T7 promoter, the SARS-CoV-2 RdRp gene may first initiate an entropy-driven cyclic amplification response. Then, after recognizing the T7 promoter sequence on the newly created dsDNA, T7 RNA polymerase starts transcription, resulting in the production of many single-stranded RNAs (ssRNAs), which in turn trigger the action of CRISPR/Cas13a. Finally, Cas13a/crRNA identifies the transcribed ssRNA. When it cleaves the ssRNA, many DNA reporter probes carrying -U-U- are cleaved on the electrode surface, increasing the ECL signal and allowing for the rapid and highly sensitive detection of SARS-CoV-2. With a detection limit of 7.39 aM, our method enables us to locate the SARS-CoV-2 RdRp gene in clinical samples. The detection method also demonstrates excellent repeatability and stability. The SARS-CoV-2 RdRp gene was discovered using the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). The developed ECL test had excellent recoveries in pharyngeal swabs and environmental samples. It is anticipated to offer an early clinical diagnosis of SARS-CoV-2 and further control the spread of the pandemic.
更多
查看译文
关键词
CRISPR/13a,ECL,SARS-CoV-2,T7 RNA polymerase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要