Theory of Excitons in Gated Bilayer Graphene Quantum Dots.

Nano letters(2023)

引用 1|浏览13
暂无评分
摘要
We present a theory of excitons in gated bilayer graphene (BLG) quantum dots (QDs). Electrical gating of BLG opens an energy gap, turning this material into an electrically tunable semiconductor. Unlike in laterally gated semiconductor QDs, where electrons are attracted and holes repelled, we show here that lateral structuring of metallic gates results in a gated lateral QD confining both electrons and holes. Using an accurate atomistic approach and exact diagonalization tools, we describe strongly interacting electrons and holes forming an electrically tunable exciton. We find these excitons to be different from those found in semiconductor QDs and nanocrystals, with exciton energy tunable by voltage from the terahertz to far infrared (FIR) range. The conservation of spin, valley, and orbital angular momentum results in an exciton fine structure with a band of dark low-energy states, making this system a promising candidate for storage, detection and emission of photons in the terahertz range.
更多
查看译文
关键词
excitons,graphene,quantum dots,terahertz,two-dimensional materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要