Intrathecal AAV9/AP4M1 gene therapy for hereditary spastic paraplegia 50 shows safety and efficacy in preclinical studies.

The Journal of clinical investigation(2023)

引用 3|浏览23
暂无评分
摘要
Spastic paraplegia 50 (SPG50) is an ultrarare childhood-onset neurological disorder caused by biallelic loss-of-function variants in the AP4M1 gene. SPG50 is characterized by progressive spastic paraplegia, global developmental delay and subsequent intellectual disability, secondary microcephaly, and epilepsy. Preclinical studies evaluated an adeno-associated virus (AAV)/AP4M1 gene therapy for SPG50. In vitro studies demonstrated that transduction of patient-derived fibroblasts with AAV2/AP4M1 resulted in phenotypic rescue. To evaluate efficacy in vivo, Ap4m1 knockout mice were intrathecally (IT) injected with 5E11, 2.5E11, or 1.25E11 vg doses of AAV9/AP4M1 at postnatal day p7-10 (pre-manifesting cohorts) or p90 (early manifesting cohorts). Age- and dose-dependent effects were observed, with early intervention and higher doses achieving the best therapeutic benefits. In parallel, three toxicology studies in wild-type mice, rats, and non-human primates (NHPs) demonstrated that AAV9/AP4M1 had an acceptable safety profile up to a target human dose of 1E15 vg. Of note, similar degrees of minimal to mild dorsal root ganglia (DRG) toxicity were observed in both rats and NHPs, supporting the use of rats to monitor DRG toxicity in future IT AAV studies. These preclinical results identify an acceptably safe and efficacious dose of IT-administered AAV9/AP4M1, supporting an investigational gene transfer clinical trial to treat SPG50.
更多
查看译文
关键词
Neurological disorders,Neuroscience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要