Black rice regulates lipid metabolism, liver injury, oxidative stress and adipose accumulation in high-fat/cholesterol diet mice based on gut microbiota and untargeted metabonomics.

The Journal of nutritional biochemistry(2023)

Cited 0|Views2
No score
Abstract
Black rice displays a series of properties including regulating lipid metabolism and attenuating liver injury. Our study aimed to investigate the effect of Zixiangnuo black rice (ZG), peeled rice (ZPG), rice bran (ZBG) on lipid metabolism, liver inflammation, gut microbiota and metabolite profiles in high-fat/cholesterol (HFCD) diet mice. A total of five treatment groups were fed a normal control diet or a HFCD with or without Highland barley (HB) supplementation for 10 weeks. The results showed that ZBG significantly improved lipid parameters, liver function and injury and blood glucose indexes related to hyperlipidemia compared with HFCD group. ZBG recovered the disorder of gut microbiota by increasing Bacteroidetes/Firmicutes ratio and Lactobacillus abundance, and decreasing Proteobacteria abundance. ZBG enhanced the levels of six short chain fatty acids. Fecal metabolomics analysis showed that the important differential metabolites between ZBG and HFCD group were Deoxycholic acid and Myclobutanil, and metabolic pathways were Arachidonic acid metabolism and ABC transporters. Results suggested that BR or bran were effective dietary candidates to ameliorate hyperlipidemia.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined