Transcriptomic and physiological properties reveal the tolerance mechanism to difenoconazole toxicity in wheat (Triticum aestivum L.).

Jingchong Li, Runlian Geng,Xiangjun Kong,Lijie Li, Zhiyong Zhang,Runqiang Liu

Ecotoxicology and environmental safety(2023)

引用 1|浏览6
暂无评分
摘要
Difenoconazole (DFZ) is a broad-spectrum fungicide widely applied in wheat production. However, excessive accumulation is linked to phytotoxicity. The effects of DFZ on plants and the response mechanisms to DFZ toxicity are poorly understood. Herein, the uptake, accumulation, and translocation of DFZ and induced changes in the morphology, physiology, and gene expression were investigated under hydroculture of roots treated with 50, 100, and 200 mg/L DFZ concentrations. Compared with the control, DEZ treatment upregulated the expression of genes encoding 4-coumarate-CoA ligase (4CL) and peroxidase (POD) involved in the lignin biosynthesis pathway and enhanced lignin biosynthesis. DFZ accumulated more in older leaves (cotyledons and lower true leaves), with 0.49-5.71 and 0.09-2.14 folds higher than levels in new upper leaves and roots, respectively. The excessive accumulation of DFZ in tissues was rapidly degraded, with a 15.7-69.3% reduction of DFZ content in roots and leaves from 3 DAT to 6 DAT. The genes expression and activity of glutathione S-transferase (GST) were increased. Furthermore, DFZ treatments upregulated genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), and anthocyanidin synthase (ANS) involved in the flavonoid biosynthesis pathway and increased the amount of flavonoid and anthocyanins in leaves. This study provides new insights into the self-protective behaviors exhibited by wheat plants under DFZ stress. The mechanisms included hindering DFZ penetration from roots by enhancing lignin biosynthesis, accumulating more in old leaves, degrading by GST, and alleviating oxidative damage by increasing the content of flavonoids and anthocyanins in leaves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要