A columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells

Nature Chemistry(2023)

引用 22|浏览9
暂无评分
摘要
Quasicrystals are intriguing structures that have long-range positional correlations but no periodicity in real space, and typically with rotational symmetries that are ‘forbidden’ in conventional periodic crystals. Here, we present a two-dimensional columnar liquid quasicrystal with dodecagonal symmetry. Unlike previous dodecagonal quasicrystals based on random tiling, a honeycomb structure based on a strictly quasiperiodic tessellation of tiles is observed. The structure consists of dodecagonal clusters made up of triangular, square and trapezoidal cells that are optimal for local packing. To maximize the presence of such dodecagonal clusters, the system abandons periodicity but adopts a quasiperiodic structure that follows strict packing rules. The stability of random-tiling dodecagonal quasicrystals is often attributed to the entropy of disordering when strict tiling rules are broken, at the sacrifice of the long-range positional order. However, our results demonstrate that quasicrystal stability may rest on energy minimization alone, or with only minimal entropic intervention.
更多
查看译文
关键词
Molecular self-assembly,Self-assembly,Chemistry/Food Science,general,Analytical Chemistry,Organic Chemistry,Physical Chemistry,Inorganic Chemistry,Biochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要