Electronic states and optical characteristics of GaAs Spherical quantum dot based on Konwent-like confining potential: Role of the hydrogenic impurity and structure parameters

Optik(2023)

引用 3|浏览11
暂无评分
摘要
In this study, we investigate for the first time the electronic states and optical characteristics of GaAs quantum dot with an on-center hydrogenic impurity using a Konwent-like spherical potential well. We numerically solve the radial component of Schrodinger equation in the framework of the effective-mass approximation (EMA) to determine the energy level structure and wavefunctions of the system. We then calculate the optical absorption coefficient (OAC) of the system using Fermi's golden rule and discuss the influence of the energy separation (E1p-E1 s), the dipole matrix element and the parameters of the potential on the OAC. We calculate and compare radial distributions for the lowest four electronic states (i.e., 1 s, 1p, 2 s, and 2p) of the system with and without the on-center impurity for different values of the parameters of the Konwent-like potential. Our results show how vary the parameters of the potential to tune the OAC towards red or blue shift and also to control its amplitude.
更多
查看译文
关键词
Optical absorption coefficient,Spherical quantum dots,Schrödinger equation,Hydrogenic impurity,Konwent-like potential
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要