Spatial-temporal expression analysis of lineage-restricted shell matrix proteins reveals shell field regionalization and distinct cell populations in the slipper snail Crepidula atrasolea

Rebecca N. Lopez-Anido,Grant O. Batzel, Gabriela Ramirez,Jessica A. Goodheart, Yiqun Wang,Stephanie Neal,Deirdre C. Lyons

bioRxiv (Cold Spring Harbor Laboratory)(2023)

Cited 0|Views3
No score
Abstract
Molluscs are one of the most morphologically diverse clades of metazoans, exhibiting an immense diversification of calcium carbonate structures, such as the shell. Biomineralization of the calcified shell is dependent on shell matrix proteins (SMPs). While SMP diversity is hypothesized to drive molluscan shell diversity, we are just starting to unravel SMP evolutionary history and biology. Here we leveraged two complementary model mollusc systems, Crepidula fornicata and Crepidula atrasolea , to determine the lineage-specificity of 185 Crepidula SMPs. We found that 95% of the adult C. fornicata shell proteome belongs to conserved metazoan and molluscan orthogroups, with molluscan-restricted orthogroups containing half of all SMPs in the shell proteome. The low number of C. fornicata -restricted SMPs contradicts the generally-held notion that an animal’s biomineralization toolkit is dominated by mostly novel genes. Next, we selected a subset of lineage-restricted SMPs for spatial-temporal analysis using in situ hybridization chain reaction (HCR) during larval stages in C. atrasolea . We found that 12 out of 18 SMPs analyzed are expressed in the shell field. Notably, these genes are present in 5 expression patterns, which define at least three distinct cell populations within the shell field. These results represent the most comprehensive analysis of gastropod SMP evolutionary age and shell field expression patterns to date. Collectively, these data lay the foundation for future work to interrogate the molecular mechanisms and cell fate decisions underlying molluscan mantle specification and diversification. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined