Tb 3+ -based multi-mode optical ratiometric thermometry.

Physical chemistry chemical physics : PCCP(2023)

Cited 0|Views6
No score
Abstract
Owing to some special superiority, luminescence ratiometric thermometry, mainly including dual excitations single emission and single excitation dual emissions, has gained popularity over the past few years. However, developing novel ratiometric thermometry that can work in multi-mode is still a challenge. Here we report a temperature measurement method based on the photoinduced luminescence of Tb in the low-cost and easy to prepare calcium tungstate. Both the conventional luminescence intensity ratio (LIR) and recently developed single-band ratiometric (SBR) strategies have been achieved in our materials. On the one hand, upon excitation of the charge transfer state, the emissions from the excited D and D states present different responses to temperature. A thermometry depending on the LIR between these two emissions has thus been developed, with adjustable relative sensitivity that is sensitive to the excitation wavelength. On the other hand, both the emissions from the excited D and D states respond dissimilarly to the temperature variation. A SBR thermometer has thus been constructed with two excitation modes, reaching the maximum relative sensitivity of 1.83% K at 573 K. The present work is expected to inspire other researchers to exploit more multi-mode optical ratiometric thermometries.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined