Solid lipid nanoparticles cyclodextrin-decorated incorporated into gellan gum-based dry floating in situ delivery systems for controlled release of bioactive compounds of safflower (Carthamus tinctorius. L): A proof of concept study in biorelevant media.

International journal of biological macromolecules(2023)

Cited 1|Views10
No score
Abstract
Safflower (Carthamus tinctorius L.) has been explored as a source of natural antioxidant. However, quercetin 7-O-beta-D-glucopyranoside and luteolin 7-O-beta-D-glucopyranoside, as its bioactive compounds, possessed poor aqueous solubility, limiting its efficacy. Here, we developed solid lipid nanoparticles (SLNs) decorated with hydroxypropyl beta-cyclodextrin (HPβCD) incorporated into dry floating gel in situ systems to control the release of both compounds. Using Geleol® as a lipid matrix, SLNs were <200 nm in size with >80 % of encapsulation efficiency. Importantly, following the decoration using HPβCD, the stability of SLNs in gastric environment was significantly improved. Furthermore, the solubility of both compounds was also enhanced. The incorporation of SLNs into gellan gum-based floating gel in situ provided desired flow and floating properties, with <30 s gelation time. The floating gel in situ system could control the release of bioactive compounds in FaSSGF (Fasted-State Simulated Gastric Fluid). Furthermore, to assess the effect of food intake on release behavior, we found that the formulation could show a sustained release pattern in FeSSGF (Fed-State Simulated Gastric Fluid) for 24 h after being released in FaSGGF for 2 h. This indicated that this combination approach could be a promising oral delivery for bioactive compounds in safflower.
More
Translated text
Key words
Floating gel in situ,Safflower,Solid lipid nanoparticles
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined