Depletion of LONP2 unmasks differential requirements for peroxisomal function between cell types and in cholesterol metabolism

Akihiro Yamashita,Olesia Ignatenko,Mai Nguyen, Raphaëlle Lambert,Kathleen Watt, Caroline Daneault,Isabelle Robillard-Frayne,Ivan Topisirovic, Christine Des Rosiers,Heidi M. McBride

Biology Direct(2023)

Cited 0|Views11
No score
Abstract
Peroxisomes play a central role in tuning metabolic and signaling programs in a tissue- and cell type-specific manner. However, the mechanisms by which the status of peroxisomes is communicated and integrated into cellular signaling pathways is not yet understood. Herein, we report the cellular responses to acute peroxisomal proteotoxic stress upon silencing the peroxisomal protease/chaperone LONP2. Depletion of LONP2 triggered accumulation of its substrates, alterations in peroxisome size and numbers, and luminal protein import failure. Gene expression changes and lipidomic analysis revealed striking cell specific differences in the response to siLONP2. Specific to COS-7 cells was a strong activation of the integrated stress response (ISR) and upregulation of ribosomal biogenesis gene expression levels. Common changes between COS-7 and U2OS cell lines included repression of the retinoic acid signaling pathway, and upregulation of sphingolipids. Cholesterol accumulated in the endomembrane compartments in both cell lines, consistent with evidence that peroxisomes are required for cholesterol flux out of late endosomes. These unexpected consequences of peroxisomal stress provide an important insight for our understanding of the tissue-specific responses seen in peroxisomal disorders. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined