Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion

biorxiv(2023)

引用 60|浏览12
暂无评分
摘要
Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs has been postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observed pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR-engagement of highly abundant endogenous pMHCIIs was low or non-existent and affected neither TCR-engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches. SHORT SUMMARY Platzer et al. revealed via highly quantitative and single molecule live cell microscopy the nature of peptide-loaded MHC class II molecules (pMHCII) as monomeric, densely populating, randomly distributed and predominantly rapidly diffusing entities on the surface of B-cells and dendritic cells. Low abundant stimulatory agonist pMHCII acted as autonomous units with the highest chance of T-cell detection when equally spread on APCs. The presence of bystander-pMHCII previously termed “co-agonist pMHC” affected neither synaptic agonist -TCR-binding nor efficiencies of T-cell recognition. “Co-agonist”-TCR-binding resembled random molecular collisions. Findings inform the design of T-cell-based immunotherapies. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
MHC class II, molecular imaging, T-cell antigen recognition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要