Clinical implications of coronary microvascular dysfunction in patients with non-obstructive coronary artery disease and role of the thermodilution method

MINERVA CARDIOLOGY AND ANGIOLOGY(2023)

引用 1|浏览18
暂无评分
摘要
More than 60% of patients undergoing coronary angiography present no coronary artery disease (CAD). Angina and myocardial ischemia are classically determined by epicardial vascular obstruction, but coronary microvascular dysfunction (CMD) may also represent a possible cause for these phenomena. Two endotypes of CMD have been recognized, with two different pathophysiological mechanisms: structural CMD, characterized by low coronary flow reserve (CFR) and high microvascular resistance (MVR) values; and functional CMD, characterized by low CFR and normal MVR values. According to the present data, almost half of patients with non-obstructive CAD have shown signs of CMD. For this reason, further investigations for microvascular function assessment should be considered when evaluating no-CAD patients complaining of angina or presenting signs of myocardial ischemia. The thermodilution method is currently becoming a widespread invasive technique due to its feasibility and high reproducibility for coronary physiology evaluation. Furthermore, a recently introduced technique - called continuous thermodilution - allows for direct measurement of absolute coronary flow and resistances. The role of this brand-new technique in the clinical scenario is however still to be fully investigated and its use is at present limited to research purposes only. Among no-CAD patients, both structural and functional CMD are related to a worse prognosis in term of mortality and major adverse cardiovascular events (MACE). In this review, we will discuss the present evidence supporting the definition, prevalence and clinical implication of the different forms of CMD and the technical aspects of its invasive assessment.
更多
查看译文
关键词
Microvascular angina,Thermodilution,Miocardial fractional flow reserve
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要