Construction and application of sponge city resilience evaluation system: a case study in Xi’an, China

Environmental science and pollution research international(2023)

引用 5|浏览2
暂无评分
摘要
Urban vulnerability is evident when highly complex flood risks overlap with diverse cities, and it is important to enhance the resilience of cities to flood shocks. In this study, a sponge city resilience assessment system is established considering engineering, environmental and social indicators, and the grey relational analysis method (GRA) is used to quantify sponge city resilience. At the same time, a multi-objective optimization model is established based on the three dimensions of water ecological environment, drainage safety, and waterlogging safety. The optimal configuration of grey-green infrastructure is weighed by combining the ideal point method, aiming to ensure that cities effectively reduce flood risk through the optimal configuration scheme. Taking the Xiaozhai area in Xi’an as the study area, the evaluation results show that the grey relational degree (GRD) of the resilience indexes of the original scheme is between 0.390 and 0.661 under the seven different return periods, while the optimization scheme ranges from 0.648 to 0.765, with the best sponge city resilience at a return period of 2a. Compared with the original scheme, the optimized sponge city resilience level increases from level II to nearly level I in the low return period and from level IV to level II in the high return period, indicating that city’s ability to cope with waterlogging and pollution is enhanced significantly. Besides, the main factor affecting the sponge city resilience is the runoff control rate, followed by pollutant load reduction rate, which can provide a methodological framework for the assessment and improvement of sponge city resilience.
更多
查看译文
关键词
Grey relational analysis,Indicator system,Layout optimization,SWMM,Sponge city resilience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要