Phosphatidylcholine deficiency increases ferroptosis susceptibility in the Caenorhabditis elegans germline.

Journal of genetics and genomics = Yi chuan xue bao(2023)

引用 0|浏览14
暂无评分
摘要
Ferroptosis, a regulated and iron-dependent form of cell death characterized by peroxidation of membrane phospholipids, has tremendous potential for the therapy of human diseases. The causal link between phospholipid homeostasis and ferroptosis is incompletely understood. Here, we reveal that spin-4, a previously identified regulator of the "B12-one-carbon cycle-phosphatidylcholine (PC)" pathway, sustains germline development and fertility by ensuring PC sufficiency in the nematode Caenorhabditis elegans. Mechanistically, SPIN-4 regulates lysosomal activity which is required for B12-associated PC synthesis. PC deficiency-induced sterility can be rescued by reducing the levels of polyunsaturated fatty acids (PUFAs), reactive oxygen species (ROS), and redox-active iron, which indicates that the sterility is mediated by germline ferroptosis. These results highlight the critical role of PC homeostasis in ferroptosis susceptibility and offer a new target for pharmacological approaches.
更多
查看译文
关键词
Ferroptosis,Lysosome,Phosphatidylcholine,SPIN-4,Sterility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要